

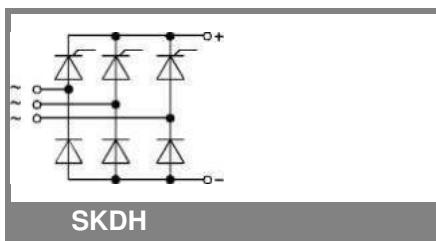
SEMIPONT® 2

Controllable Bridge Rectifiers

SKDH 100

Features

- Fully controlled three phase bridge rectifier
- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1400V
- High surge currents
- Easy chassis mounting
- UL recognized, file no. E 63 532


Typical Applications

- For DC drives with a fixed direction of rotation
- Controlled field rectifiers for DC motors
- Controlled battery charger rectifiers

1) Painted metal shield of minimum 250 x 250 x 1 mm: $R_{th(c-a)} = 1,8 \text{ K/W}$

V_{RSM}	V_{RRM}, V_{DRM}	$I_D = 100 \text{ A}$ (full conduction) ($T_c = 84^\circ\text{C}$)
V	V	$SKDH 100/08$
800	800	$SKDH 100/12$
1200	1200	$SKDH 100/14$
1400	1400	

Symbol	Conditions	Values	Units
I_D	$T_c = 85^\circ\text{C}$ $T_a = 45^\circ\text{C}$; chassis ¹⁾ $T_a = 45^\circ\text{C}$; P13A/125 $T_a = 45^\circ\text{C}$; P1A/120	98 20 25 45	A A A A
I_{TSM}, I_{FSM}	$T_{vj} = 25^\circ\text{C}$; 10 ms $T_{vj} = 125^\circ\text{C}$; 10 ms	1000 850	A A
i^2t	$T_{vj} = 25^\circ\text{C}$; 8,3 ... 10 ms $T_{vj} = 125^\circ\text{C}$; 8,3 ... 10 ms	5000 3600	A ² s A ² s
V_T	$T_{vj} = 25^\circ\text{C}$; $I_T = 200 \text{ A}$	max. 1,95	V
$V_{T(TO)}$	$T_{vj} = 125^\circ\text{C}$;	max. 1	V
r_T	$T_{vj} = 125^\circ\text{C}$	max. 4,5	mΩ
I_{DD}, I_{RD}	$T_{vj} = 125^\circ\text{C}$; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 15	mA
t_{gd}	$T_{vj} = 25^\circ\text{C}$; $I_G = 1 \text{ A}$; $di_G/dt = 1 \text{ A}/\mu\text{s}$	1	μs
t_{gr}	$V_D = 0,67 \cdot V_{DRM}$	1	μs
$(dv/dt)_{cr}$	$T_{vj} = 125^\circ\text{C}$	max. 500	V/μs
$(di/dt)_{cr}$	$T_{vj} = 125^\circ\text{C}$; $f = 50 \text{ Hz}$	max. 50	A/μs
t_q	$T_{vj} = 125^\circ\text{C}$; typ.	80	μs
I_H	$T_{vj} = 25^\circ\text{C}$; typ. / max.	100 / 200	mA
I_L	$T_{vj} = 25^\circ\text{C}$; $R_G = 33 \Omega$	250 / 400	mA
V_{GT}	$T_{vj} = 25^\circ\text{C}$; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25^\circ\text{C}$; d.c.	min. 150	mA
V_{GD}	$T_{vj} = 125^\circ\text{C}$; d.c.	max. 0,25	V
I_{GD}	$T_{vj} = 125^\circ\text{C}$; d.c.	max. 5	mA
$R_{th(j-c)}$	per thyristor / diode	0,85	K/W
	total	0,141	K/W
$R_{th(c-s)}$	total	0,05	K/W
T_{vj}		- 40 ... + 125	°C
T_{stg}		- 40 ... + 125	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M_s	to heatsink	5	Nm
M_t	to terminals	3	Nm
m		165	g
Case	SKDH	G 53	

SKDH 100

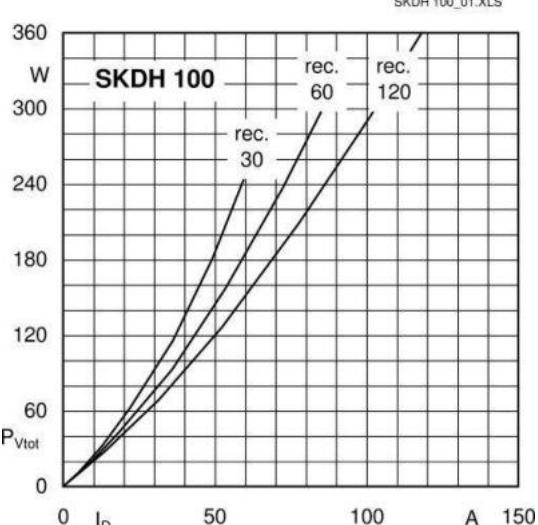


Fig. 1 Power dissipation vs. output current

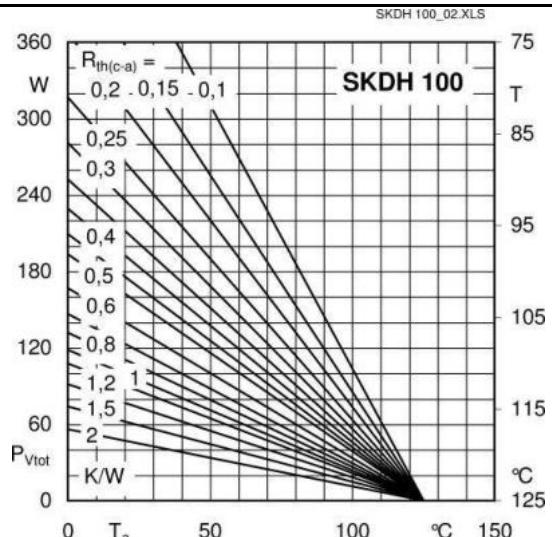


Fig. 2 Power dissipation vs. case temperature

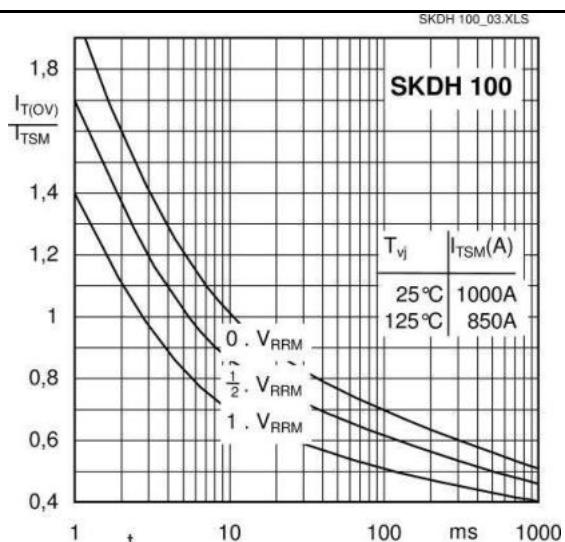


Fig. 5 Surge overload characteristics vs. time

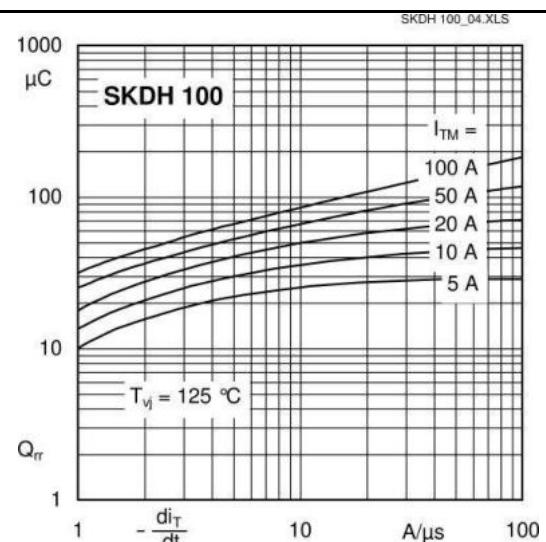


Fig. 8 Recovered charge vs. current decrease

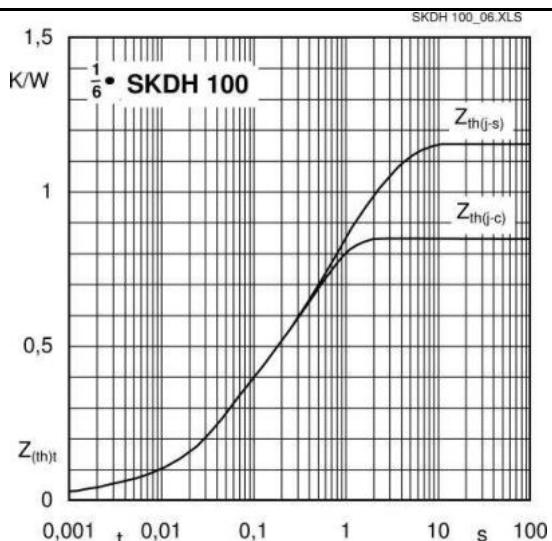


Fig. 12 Transient thermal impedance vs. time

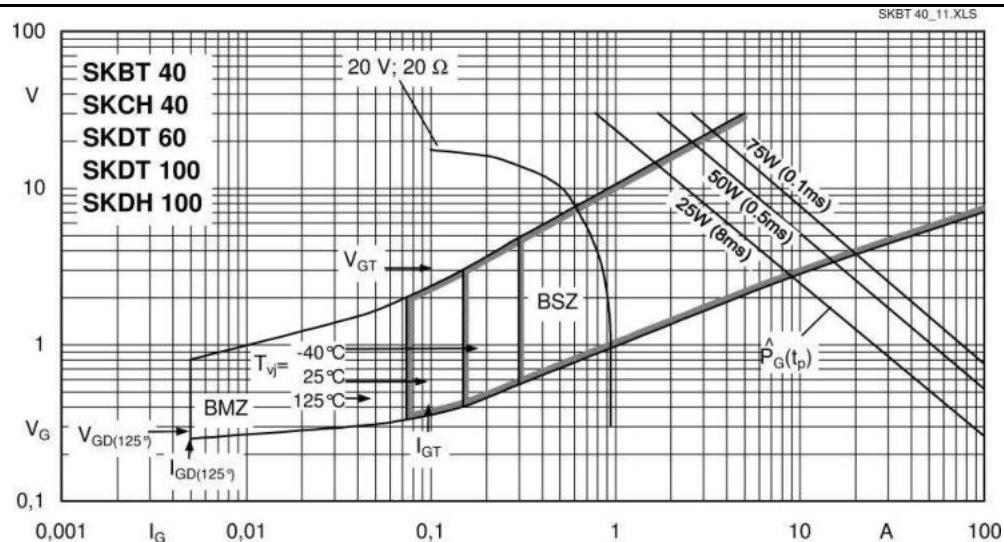
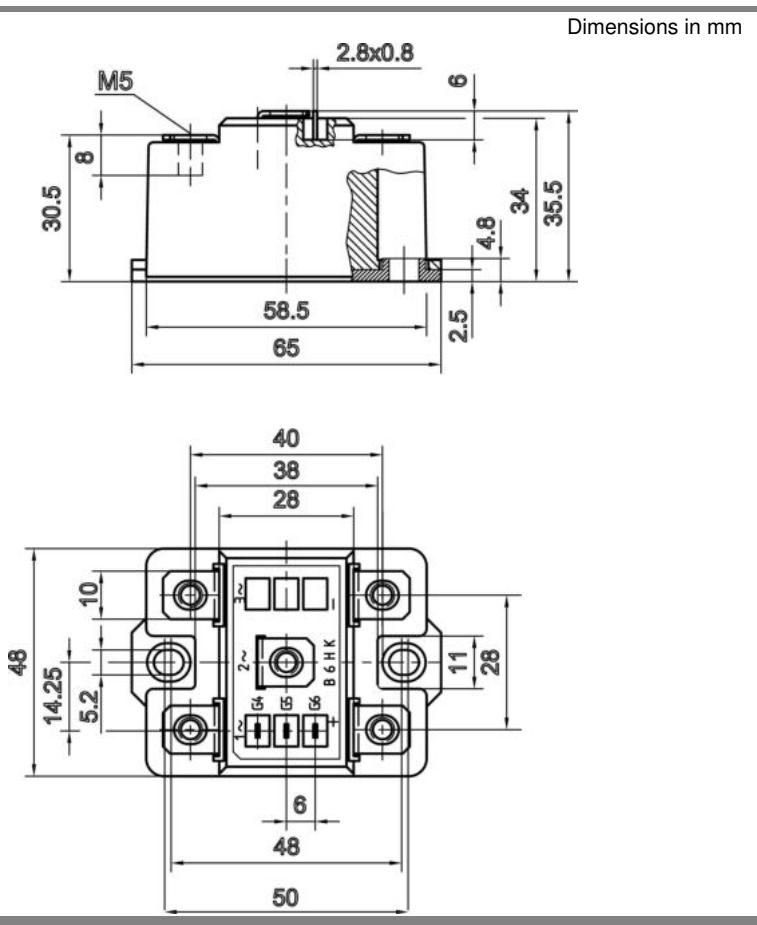



Fig. 11 Gate characteristics of a thyristor device

Case G 53

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.